Parallel and distributed computations in evolutionary and immune optimization of laminates
نویسندگان
چکیده
The paper deals with the application of the parallel and distributed calculations for global optimization of composite structures. Evolutionary Algorithm and Artificial Immune System are employed as global optimization methods. The aim of the optimization is to find the best stacking sequence of laminates for given criteria. To reduce the computational time parallel versions of global optimization algorithms are used. Computational grid is used to perform distributed computations. A boundary-value problem for laminates is solved by means of Finite Element Method commercial software. Numerical examples presenting efficiency of proposed attitude are attached.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملPresenting an evolutionary improved algorithm for the multi-objective problem of distribution network reconfiguration in the presence of distributed generation sources and capacitor units with regard to load uncertainty.
Reconfiguration of distribution network feeders is one of the well-known and effective strategies in the distribution network to obtain a new optimal configuration for the distribution feeders by managing the status of switches in the distribution network. This study formulates the multi-objective problem of reconfiguration of a distribution network in the optimal presence of distributed genera...
متن کاملA Hybrid MOEA/D-TS for Solving Multi-Objective Problems
In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...
متن کاملA Message-Passing Distributed Memory Parallel Algorithm for a Dual-Code Thin Layer, Parabolized Navier-Stokes Solver
In this study, the results of parallelization of a 3-D dual code (Thin Layer, Parabolized Navier-Stokes solver) for solving supersonic turbulent flow around body and wing-body combinations are presented. As a serial code, TLNS solver is very time consuming and takes a large part of memory due to the iterative and lengthy computations. Also for complicated geometries, an exceeding number of grid...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کامل